@ THE AEROSPACE
CORPORATION

Midyear Report for Implementing the Interoperable IETF/IDWG/IDXP
Protocol with Proxy/Tunnel Capability

Team Members:

Nick Hertl — (Project Manager)

Will Berriel

Richard Fujiyama

Chip Bradford

Project Advisor: Professor Michael Erlinger
Project Liaisons: Joseph Betser, Ph.D

Rayford Sims

December 2002

2002/03 Aerospace Computer Science Clinic

TABLE OF CONTENTS

ABSTRACT bbb R s Vi
1. BACKGROUND INFORMATION. ..ottt bbb s 7
11 TP e 7
12. FIREWALL .ttt ettt bbbt bbb bbb bbb bbb bbb bbb bbb bbb bbbt benas 7
13. BEEDP.... o s 7
14 IDXPc R R b 8
15. SECURITY wutuiteeesesesesesesesesesesesesesesese st se st se st e s s st e s s e 44 E £ e 4 e e et ettt ettt 9
16. TUNNEL o bbb b bbb 9
2 EVALUATION OF ALTERNATIVESTO TUNNELcoovciiiiinsns e sssssssses 15
21 SOLTLS ettt RS 15
22 SASL e 15
23 SSH TUNNELING.....cuttiiiiiiis ittt s bbb bbb bbb 16
24. VPN s 16
25 [PSEC ..t R 17
3. WORK COMPLETED. ...t 18
31 EVALUATION OF TUNNEL DRAFT ..ottt sisesesisssesesesssssesssssssesssssssasssssssesssssssessssssssssssssssssssssnsnens 18
32 CHOOSING BEEP IMPLEMENTATION ..ututtiseeieseeeneseesesseesessssesssssssssssssssssssssssssssssnsssssssssnsssssssssssssnes 18
33. SINGLE HOST BEEP COMMUNICATION ..cutuiuteiiseeneneseeeseesesssesesssssesssessssssssssssssssssssssssssssnsssssssssssasnes 19
34. PEER-T O-PEER BEEP COMMUNICATION ...cotititiiririsisisisesisesesesesisesesssesesesssssesesssssssesssssssssssssssssssssssssssssesssens 19
35. ONE HOP BEEP COMMUNICATION ...ctttirireesieseesessseesessseesssssessssssssssssssssssssssssssssssnssssssssssssssssssssssnes 20
4. FUTURE WORK ...t bbb s 22
4.1 MULTIPLE HOP TUNNELING.....cetttttrtrtrtrtstststseststsesesssssesssssssssessns 22
4.2, FIREWALL PROXY HANDLING......cuttitrirtrtstristristsisesesisisesesssssesesesssssesssssssesssssssesssssssesssssssessssssssssssssssssssssnsnsns 22
43. INTEROPERABILITY 1uttutrtstetsestseseseseseseseseseestsesesesesesesssesesesssssesesssssssssssesssssssesessssssesssssssessssssssssssssssssssssnsnsns 23

2002/03 Aerospace Computer Science Clinic

44. FINAL TESTING .otvuuueueessesteesesssesssessseessesssessse st st ettt bbb bbb bbbttt 24
g S g o = o1 TP 25
S 110 | £ 0Tt - Y7 PP 25
4.4.3. ClIeNt C, SEIVEN JAVAcocevuerererrerrersersessesssissesessese e st ssssssssssessesenas 25
4.4.4. Client JAVA, SEIVEN C ..o e e e 25
445, Client C, PrOXY C, SEIVEN Coveievecsieerirsstesesssstessesssssssssssssssssssssssessssssssssssssssssssssssssssesssssssssssssssesesen 25
4.4.6. Client Java, ProxXy Java, SENVEN JAVAcccvrereirismseessssssssssesssssesssssssssesssssssssssssssssesssssssssssssesesen 26
4.4.7. Client C, ProXy JAVa, SEIVELN C......cciceurireeerressiessesssssssssssssssssssssssesseseses 26
4.4.8. Client Java, ProXy C, SEIVEr JAVA.......ccceceeeerereeieiiessssessssssssssssssssessssssssssesssssssssssssssssesssssssssssssseseses 26
4.4.9. Client C, Proxy 1 C, ProXy 2 C, SEIVEL C...c.ovieieiererieirisestsssesssssessseses 26
4.4.10. Client C, Proxy 1 C, Proxy 2 C, SErVEN C......ccoumvereeeerersestnisesesssessssssssssesssssssssssssssssssssssssssssssssses 26

APPENDIX A: REFERENCES ...ttt 27

APPENDIX B:

APPENDIX C:

APPENDIX D:

APPENDIX E:

SCHEDULE ... b bbb 29
CAPABILITIES ... s bbb 31
TUNNEL H.coi s s 34
TUNNEL.C...rt bbb bbb s 35

2002/03 Aerospace Computer Science Clinic

LI1ST OF FIGURES

FIGURE 1: CONCEPTUAL LAY OUT ..ooiitiiriieereisesissrersesessssssesessse e sessssssssessssssssesssessssessssssssssssssssnesssssessssssssessssssssessensassessons 9
FIGURE 2: ONE HOP PROXY ...ocucitretiereieeeeseesese et sesessssssessssse s sessssssssessss st ssssssssssnessassessssesssessssssssessensassesas 11
FIGURE 3: 2 PROXIES....vteutuerseestseressesessssssesssesessesesssessesessssssesessssssssessssssssenssessssessssssssssssssesssnssssessessassessssesssesasssnssesssnenssesas 12

2002/03 Aerospace Computer Science Clinic

LIST OF TABLES

TABLE 1: FIRST SEMESTER SCHEDULEcucuttrituererreessrersesessssssesessse e sesssessssesssessesssssessssesssssssssssssssssssssessssesssssessssssesssnes 29

TABLE 2: SECOND SEMESTER SCHEDULEcctutrerieiasierseseesssseessre e sesssessssessssssesssssessssessssssasessssssssssssessssesssssesssssesnsnes 30

2002/03 Aerospace Computer Science Clinic

ABSTRACT

The archiva and corrdation of network intrusion detection data is becoming more and more
important for the timely recognition of intrusion attempts and prompt response to such threats.

Often, however, the central repository of intruson datais separated from a network administrator
who wishes to examine this data. Currently, either transient, but insecure, holes are opened in the
firewall, or permanent, and secure, channels are established in order to bypassthe firewdl. Clearly a
transient and secure tunnel would be the best solution. Our project's god is to implement the Blocks
Extensble Exchange Protocol (BEEP) tuning profile for the Tunnel protocol. This promisesto
provide secure tunneling capakiilities through firewalls for intruson detection andysisaswell as
genera use.

vi

2002/03 Aerospace Computer Science Clinic

1. BACKGROUND INFORMATION

1.1. TCP

Transmisson Control Protocol (TCP) (Information Sciences Indtitute) is the main trangport
protocol that computers use to move information across the Internet. 1t provides areliable full
duplex stream of data from one host to another, potentialy using intermediate hogts (routers) to
reach the eventua goal. Many application level protocols dready use TCP, such asHTTP (web
pages) or SMTP (email). To communicate, such protocols use a stlandard interface or port. These
ports are generaly not blocked by firewalls because they are so commonly used and necessary for
regular network operation. TCP provides the trangport for the BEEP implementations that we will

use to write our profiles, but BEEP could aso be mapped to other transport layer protocols.

1.2. FIREWALL

Firewdls are computers that protect interna networks from potentia hackers, aswell as
prevent private data from lesking out to the Internet. Every firewal has alist that specifieswhich
ports or protocols are blocked or filtered. If you want to connect to a computer inside afirewal
from outside afirewall on aport that the firewall does not alow, you are not alowed to connect.

Tunnel proposes a solution to this problem for BEEP.

1.3. BEEP

BEEP (Rose) isanew genera protocol for gpplication development. In the padt,

gpplication protocol designers have spent alarge mgority of their time discussing the details of how

7

2002/03 Aerospace Computer Science Clinic

packets will look. Once dl the fighting has died down, nobody has any energy to actudly develop
the protocol. BEEP hdpswith this problem by providing avery genera set of capabilities for
goplication protocols together with a comprehensive Application Programming Interface (AP) for
goplication protocol development. It dlows the user to employ tuning profiles to enable security if
needed, or anumber of other tuning variables. This gpplication level protocol runs on top of TCP,
integrating smoothly into the TCP/IP protocol stack. BEEP alows programmers to take the best
parts of gpplication protocols and use them in their own protocals. It follows the axiom of code
reuse, dlowing developersto write a profile that will perform afunction like security, and then

amply induding that profile whenever they want an gpplication to have security features.

1.4. IDXP

Intrusion Detection Exchange Protocol (IDXP) (Feingein) isimplemented as a BEEP
profile. IDXP packets transmit data encoded using Intrusion Detection Message Exchange Format
(IDMEF), the focus of aprevious clinic. The man purpose of IDXP isto trangport intrusion
detection dert data. Thisis currently only possbleif no firewdls block the packets. IDXP isthe
current motivation for the development of the Tunne profile, snce IDXP requires the ability to
safely pass through firewalls. Tunnd canaso be used by any other BEEP profiles becauseitisa
tuning profile for BEEP. In the future, any gpplication that needs to get through afirewall should be

ableto eadly do so smply by using the Tunnd profile.

2002/03 Aerospace Computer Science Clinic

1.5. SECURITY

It isimportant to ensure secure and authenticated transmission of data, especialy when it
involves traversing afirewal intended to increase security. BEEP provides tools and methods for

eadly negotiating these properties.

1.6. TUNNEL

[Sensor HIDMEF Output

Common Alerts Client Application
[Sensor HIDMEF OutputH IDXP Jﬁ-é[BEEP H XML Parser H mon A REE e

[Sensor]—)[IDMEF Qutput

Figure 1: Conceptual Layout

Light Blue (Sensors): 3 party IDS
Yellow (Light): Assumed to work properly
Green (Tunnd): The focus of our dinic

Figure 1 showsthe ided intrusion detection Stuation. Intrusion Sensors use their innate
technology to generate derts. All Sensors use the IDMEF syntax to specify their derts. Alertsare
then trangported via the IDXP/BEEP protocols to Andyzers, where a database and user interface
exist to alow the manager to recognize intrusons and to take gppropriate action. Tunnel existsto
provide a means to trangport the intrusion derts through any number of firewals or proxies that

might exist between the Sensor and Anayzer.

Tunnel (New) provides away for BEEP peersto form an gpplicationtlayer-tunnd. Peers

exchange Tunnel packets to establish a connection between them that acts as a point-to-point

2002/03 Aerospace Computer Science Clinic

connection between the two peers. It isa profile that fadls between IDXP and BEEP, tuning the
BEEP session to have the necessary characteristics for creating the connection between the peers.
In the diagram above, each sensor will want a point-to-point connection with the Extensible Markup
Language (XML) Parser, and thus each will form its own tunnel over BEEP to alow the IDXP

messages to be exchanged between the sensors and the parser.

Tunnel, like most other BEEP profiles, uses XML for datatransfer. Its eements are layered,
so that the outermost element specifies the next hop in the connection, or through the use of an
empty Tunnel element, that it has reached an endpoint. A proxy refersto any BEEP peers between
the start and endpoint in the tunnd; firewdls are a common example. Once the initid connection has
been setup between the begin and end points, the proxies between them transparently transmit
whatever is sent to them, not checking for BEEP syntax, alowing each peer to encrypt their
messages without the proxies being able to view them. In addition once atunnd is established, peers
can send non-BEEP data through it. The proxies can dso use whatever security fegtures they wish
to manage their immediate connections. A proxy can limit tunnels to certain machines or to only
those hosts that are authorized and authenticated through Smple Authentication and Security Layer

(SASL).

The Internet Engineering Task Force (IETF) Tunnd Internet Draft provides examples of the
expected behavior for some common expected scenarios. The smplest example would be two
hosts separated by one peer, with theinitiator knowing the path to the lisgtener. Asshown inthe

following figure

10

2002/03 Aerospace Computer Science Clinic

Prosay 1 Host 2

Tranzport Connest —— ¢
M—————— HEEPGreetily ——————¥

SEATUNNEL ———————————H
Transport

Connect
BEEF Greeting

SErTUNNEL

" oK

Ok

BEEF Greeting

Figure 2: One Hop Proxy
Hogt 1 is separated from Host 2 by Proxy 1. Host 1 connects to the proxy, starts a BEEP

session, and sends the Tunnel start message with two layers: The outermost being the identifier for
Hog 2 and the innermost being an empty Tunnel dement, signifying that the second hop isthe
endpoint (Host 2).

After theinitia connection between Host 1 and Proxy 1, Proxy 1 connectsto Host 2 and
darts asecond BEEP session. Proxy 1 sendsan initia Tunnel message, Sgnifying that Host 2 isan
endpoint, & which point Host 2 replies with an OK message (assuming it iswilling to accept the
tunndl). After receiving the OK, Proxy 1 sendsit's own OK back to Host 1 and begins

transparently forwarding al messages between Host 2 and Host 1.

11

2002/03 Aerospace Computer Science Clinic

One mgor aspect of Tunnel isthat it can be directed to a host based on various criteria, the
amplest would be fully qudified domain names (e.g. cshmc.edu) or 1Pv4 addresses with a port
number, but it can dso work if given arequested service (e.g. email). The proxy may know which

internd machine hosts such aservice, or may reply with an error.

For amore complicated example, we can use two proxies between the two hosts. The

following diagram shows such an exchange:

Hast 1 Froxy 1 Proxy 2 I Host 2

Transport
Connect

H—BEEPGreetilyg —W
Start TUNNEL[1}—H¥

Transport
—M
Connect

44— HFEEPGreetly — P

Start TUMHEL[2— ¥ T 4
ranspo
—
Connect

M BEEPGreetiy ———HM
Start TUNHEL[E——H
ok

O[]

aK[s]

BEEF Greeting[S)

b

Figure 3: 2 Proxies

If Host 1 knows the full path to Host 2 through the two proxies, then it connects to Proxy 1
the same way asit would in the 1-hop example, and when it sends the initia Tunnd start message
(line#1) it will send a message with three layers: The outermost being the identifier of Proxy 2, the
middle being the identifier of Host 2, and the innermost being blank. Proxy 1 then strips off the
outermost Tunnd eement and initiates a connection to Proxy 2. After starting a BEEP session, it

sends Proxy 2 the Tunndl message consisting of the inner two Tunnd dements (line #2). Proxy 2
12

2002/03 Aerospace Computer Science Clinic

connects to Host 2, initiates the BEEP session, and sends the innermost Tunnd dement (line #3).
Thisinforms Host 2 that it is the expected endpoint. If Host 2 accepts the connection, it sends an
OK to Proxy 2. Proxy 2 sends an OK to Proxy 1 and anything that Proxy 2 receives from Host 2
after the OK (line#4) is sent trangparently to Proxy1. Upon receiving the OK from Proxy 2, Proxy
1 sendsan OK to Host 1 and immediately after begins transparently forwarding messages from

Proxy 2 to Host 1.

If Host 1 does not know the full path to Host 2, but knows that a path exigts to it through
Proxy 1, it can il establish atunnd to Host 2. The connection between Host 1 and Proxy 1 begins
as above, but when sending the Tunnel start message to Proxy 1, (line#1 in the diagram) Host 1
sends only the identifier for Host 2 (the service running on Host 2, the requested profile on Host 2,
or aspecific identifying string for Host 2) and no empty Tunnel eement. Proxy 1 should be able to
determine that Host 2 lies somewhere beyond Proxy 2, and thus connects to Proxy 2 as above, and
sends a Tunnd dtart message with a single eement, the identifier for Host 2 (line #2). Upon
recelving this message, Proxy 2 will redlize that Host 2 is connected directly to it, and thus should
connect as above, and as above send a gngle, empty Tunnd message to Host 2, Signifying that it is

the endpoint (line #3). The rest of the example carries on the same way as above.

Findly, the message sent after the tunnel is built (line# 6) does not actudly have to be a
BEEP message, although it isin these examples. The proxies do not read any of the messages
passing between them, so any type of datamay be sent over the tunnel as needed. In addition, the
hosts can work out some form of encryption preventing the proxies or anything else between them

from reading the messages, keeping them secure.

13

2002/03 Aerospace Computer Science Clinic

The most useful features that Tunnel provides for use in intruson detection come about
when amanager and an andyzer are separated by a proxy. It alows the proxy to authenticate the
manager, verifying that the manager is authorized to connect to the andlyzer. It can dso insulate the
analyzer that is behind the proxy from outside attacks, since the andyzer’ s | P address does not ever

need to be revealed to anyone outside the proxy.

14

2002/03 Aerospace Computer Science Clinic

2. EVALUATION OF ALTERNATIVES TO TUNNEL

2.1, SSL/TLS

Transport Layer Security (TLS) (Dierks, Rescorld) isthe IETF version of Secure Sockets
Layer verson 3 (SSLv3) and was mainly intended for secure transportation of HTTP traffic. In
practiceit is also used to secure NNTP (news), IMAP (email), and POP (emall) traffic. Inthe
protocol stack, TLS lies between TCP and the application layers and usudly provides an API
samilar to the BSD socket AP for secured communication. Applications that wish to make use of
SSL will require minima changes to work properly. In addition to encryption, TLS provides server
authentication via certificates and optionaly client authentication aswell. While using certificates
dlows aclient and server to authenticate without having a pre-shared secret, spoofed certificates
make it more prone to man-in-the-middle atacks. However, TLS (in the SSLv3 incarnation) is
widely deployed, because client configuration is Smple, since TLS does not address any access
control issues. Applicationsusing Tunnd are dso ableto use TLS, since they are both BEEP tuning

profiles. A secure gpplication would most likely negotiate the TLS profile before starting the tunnel.

2.2. SASL

Simple Authentication and Security Layer (SASL) (Meyers) isamethod for adding
authentication and security support to connection-based protocols. It isaframework for providing
a protocol with mechanisms for authentication, integrity checking, and encryption. Some SASL

mechanisms will negoatiate which services to provide for the protocol, while others have a

15

2002/03 Aerospace Computer Science Clinic

predetermined set of services. SASL dlows the network administrator to configure the proper level
of security for that environment; Tunnel benefits from this snce BEEP supports SASL asatuning

profile.

2.3. SSH TUNNELING

SSH (Secure Shdll) isapair of gpplicationsin the client/server model that are used to
replace therlogin and telnet programs. All communication between the client and server are
encrypted, thus providing data confidentidity in addition to client authentication. The mass adoption
of SSH impliesthat in mogt firewdls, port 22 isleft open for SSH communication, and thus SSH is
often used to create secure tunndls through firewals. However, this gpproach is not without its
drawbacks. SSH is an gpplication level tool and gpplications that wish to use SSH tunndls must
manudly cregte the tunne through SSH, the client must name an explicit endpoint for connection,
SSH only provides client authentication but no host authentication, and al traffic is encrypted.
Tunnd improves upon SSH tunneling by being more flexible in authentication and encryption details,
providing address anonymity for machines behind the firewal, and for being able to create tunndls

without an explicit endpoint (asin the case of services).

2.4. VPN

A VPN (Virtud Private Network) is a secure, permanent, private network built on a
publicly accessible infragtructure such as the Internet or telephone network. A VPN is transparent
in that the traffic it carriesis unaware of any intermediate nodes between the endpoints and the

intermediate nodes are unaware they are carrying traffic that is part of the VPN. In addition, a

16

2002/03 Aerospace Computer Science Clinic

VPN provides some combination of encryption and strong authentication of remote users and hosts,
and thus most VPN implementations are fairly intrusve on the client node. Tunnel isesser than a
VPN to adminigter and deploy since most configuration is done only on the firewdl. In addition,

Tunnel provides more palicy flexibility and is eeder to configure than aVPN.

2.5. |IPSEC

|Psec (1P Security) isaprotocol designed to protect |P (Internet Protocol) from attack. In
doing 0, it dso protects dl protocols that run on 1P such as TCP and UDP. Thus, gpplications
running on | P benefit from increased security without recompiling. However, by its nature asa
protocol-level enhancement, 1Psec requires modification of the IP stack, which usualy residesin the
kernd and isthus very invasive to operating systems. Combined with the fact that 1Psec is a peer-
to- peer protocol, deployment of 1Psec is very difficult unless dl machines are running the same
operating system or al operating systems have interoperable I1Psec implementations. Due to the
strict enforcement of |P address consistency, |Psec does not operate correctly behind a Network
Address Trandator (NAT). In comparison, Tunndl is easier to deploy, more configurable, operates

properly with NAT, and handles proxies.

17

2002/03 Aerospace Computer Science Clinic

3. WORK COMPLETED

3.1. EVALUATION OF TUNNEL DRAFT

We have read through the Tunne draft to search for any glaring problems with the current
Tunnd specification. Since no one has fully implemented Tunne before, we did not know if there
were any mgor problems that would prevent implementation. After reading through and discussing
problems, we found 3 mgjor issues with the draft. The first was that there was no IPv6 support in
the XML Document Type Definition (DTD) that describes Tunndl, nor was there a common way to
extend the DTD. Secondly, thereis apossibility for misconfigured proxies to enter into aloop,
passing a message indefinitely. Thirdly, thereis no possibility for aTime To Live (TTL) to be
specified that would function like TCPstimeto live and set a maximum number of hops, dlowing
for the detection of cycles. We contacted the author of the Tunnd draft, and since spesking to him,

he has added support for IPv6 to the draft.

3.2. CHOOSING BEEP IMPLEMENTATION

For both C and Java there are multiple BEEP implementations in various states of
development. On the C side both Begpcore-C and RoadRunner exist. Begpcore-C is devel oped by
the creators of BEEP, but is very far from finished and does not have most of the necessary
features. RoadRunner is developed by acompany in Scandinavia. It isafully festured BEEP
implementation and isfairly close to actualy being complete. On the Java side Beegpcore-JAVA and

PermaBEEP exist. Begpcore-JAVA is aso developed by the creators of BEEP and seemsto have

18

2002/03 Aerospace Computer Science Clinic

al of the security features necessary for an effective Tunnd profile. PermaBEEP is developed by a
private company, but is released as open source. It is much easier to use than Begpcore-JAVA, but
does not have dl of the necessary security features for Tunnd. We have decided to use
RoadRunner for the C versgon and begin development using PermaBEEP to speed up early

development with an eventua port to Begpcore-JAVA.

3.3. SINGLE HOST BEEP COMMUNICATION

Our initid work on implementing the Tunnd profile began with RoadRunner. Since
RoadRunner uses Glib and libxml we had to learn those libraries (as well as the RoadRunner
interface) before we could begin working on the actual BEEP profile. Once we had some genera
knowledge about these APIs, we began work on the smplest subset of the Tunne profile we could
imegine—a loopback connection. This type of communication had several advantages for our first
pass a a BEEP profile snce it only required asingle computer (thus eiminating any networking
issues) and it required support for only theempty <t unnel /> dement to befully functiond.
Implementing these features was rdaively trivid after we figured out how to use the new tools and
libraries. In addition to the C implementation, we have an equaly functiond Javaimplementation

using PermaBEEP.

3.4. PEER-TO-PEER BEEP COMMUNICATION

Once we had a smple Tunnd session working on the loopback device, it wasfairly trivid to
et this same smple communication working between two separate machines. This required no

changes to the profile itself, only modificationsto the client program that utilizes the profile. We did

19

2002/03 Aerospace Computer Science Clinic

run into a problem with the RoadRunner library while migrating the server to a separate machine.
We were unable to get the server to accept connections from remote machines and, at first, thought
this was a bug in the RoadRunner libraries snce we could find no documentation or samples of
dedling with thisissue (unfortunately, snce dl BEEP implementations are sill in development bugs
are not uncommon.) Later, however, (after patching the RoadRunner source code to fix the issue)
we discovered that our problem was redly just caused by alack of documentation for the

RoadRunner API. Additiondly, we have included this functiondity in the Java verson.

3.5. ONE HOP BEEP COMMUNICATION

Our next step in completing the Tunnel profile was to add support for proxying. The god
was to dlow a connection from client to server with a single machine in between. Thisjump was
ggnificantly more complicated than the previous milestones for severd reasons: 1) It required
parsng the XML Tunnd message in order to strip the outer eement before forwarding. 2) Once the
tunnel was established, the proxy must begin forwarding packets transparently, bypassing the

norma BEEP framing and other interpretetions.

Parsing the XML and forwarding the correctly modified tunnel message turned out to be a
ample exercisein learning the libxml API. We verified this part of the process was done usng
Ethereal to examine the network packets before work even started on the second phase, message
passing. Currently, our implementation can only handlei p4 (1P Address) or f qdn (fully qudified
domain name) tunnd atributes withthepor t atribute. The more advanced routing functiondity
dill remains to be done. Since there is no specific way these features must be implemented, we plan

to smply add the ability to register calbacks with the profile code in order for different server
20

2002/03 Aerospace Computer Science Clinic

goplications to handle these address trandations in different ways. We dso plan to add some smple

default handling routines whenever possible.

Once the Tunnel session was established, we were able to utilize the Glib event loop and
socket interfaces in order to pass data transparently from one socket to the other. Thiswas a bit
tricky, however, snce we needed to close the RoadRunner functiondity on top of the sockets

without actudly closng the sockets themsdves.

We arein the process of completing the multihop profile functiondity in Java using

PermaBEEP. It should operate just like the C version, but probably less efficient.

21

2002/03 Aerospace Computer Science Clinic

4. FUTURE WORK

4.1. MULTIPLE HOP TUNNELING

While we have not yet successfully tested our profile with multiple proxies between the
client and server, we see no reason why this should be fundamentaly different from asingle proxy
since the proxy serves as both a client and server as the tunnd is established. We should be able to

eadly finish this part of the project on schedule.

4.2. FIREWALL PROXY HANDLING

A typica use for the Tunnel profileisfor an gpplication to create a secure, authenticated,
and trangparent tunne that originates a the initiator hodt, passes through afirewadl, travels through
the Internet, passes through another firewal, and findly terminates a the listener hogt. In order to
smulate this scenario, we will implement a BEEP daemon in C that makes use of our Tunnd profile
aswel asthe SASL, TLS, and IDXP profilesthat are provided with the RoadRunner BEEP library.
The daemon is intended to be along-lived process that runs on the firewal host and handles dl
incoming TCP connections on the Internet Assigned Numbers Authority (IANA) assigned port for
BEEP. Asaproxy, the daemon must handle multiple, concurrent incoming and outgoing
connections to connect hosts on opposite ends of the tunnd. In addition, to be a useful prototype

the daemon must be robust, configurable, and portable.

We chose the C language for implementing the daemon because of the portability,

standardization, and speed that well written C code provides, as wdl asthe fact that C isthe

22

2002/03 Aerospace Computer Science Clinic

canonicd language for implementing daemons and other programs requiring high performance. The
IANA has not assigned a port number for BEEP and thus we will make use of an unassigned port
for testing purposes. Robustness is necessary because of the fact that the daemon will allow users
to bypass the normd firewdl rules. Configurability of the daemon is a concern because of the many
decisons that such adaemon must make regarding loca network policies such as dlowing only
certain users to bypass the firewall and mandating encryption of dl ougoing data. Portability is
important, as it will dlow firewals running on various operating systems such as Linux, OpenBSD,
and Solaris to use the same code base. At this time we see no reason for a kernel based
implementation of the daemon considering that code running in kerndl spaceis: subject to much
smaller memory bounds, not alowed to use user space libraries, and will probably not offer grester
performance than user space code for this gpplication. In addition, many firewdls are implemented

as daemons and thus aso run in user space.

The BEEP proxy daemon is a complicated software project that will require much time and
testing. Our current Tunnel server will evolve into this daemon over the course of the second

semedter.

4.3. INTEROPERABILITY

The IETF requires a Proposed RFC to have at least two interoperable implementations
before it can become a Draft RFC, which could then eventualy become a Standard RFC. We are
creating two Tunnel implementations in the Java and C languages and intend for them to be fully

interoperable in order to fulfill this requirement. In addition, interoperability aids in confirming the

23

2002/03 Aerospace Computer Science Clinic

proper operation of the underlying BEEP libraries and confirming our understanding of the Tunne

protocol.

Interoperability is not atrivid task given that BEEP is ardatively new protocol, both BEEP
libraries are in the beta phase, and the APIs are till changing. In addition, two team members had
minor interoperability problems with earlier versons of the BEEP libraries in research conducted

during the summer.

4.4. FINAL TESTING

We will need to test multiple scenarios with different network configurations to ensure thet
our product functions properly. First, we will need to verify single host and host-to-host
communication, which is configuration independent. We will test C and Javain thisform, aswell as
using both C and Java on the client and server for the host-to-host test. This ensures the most basic

compatibility and functiondity. Further testing will include a more complicated network setup.

Intheided Stuation, a machine on a particular network wants to access amachine on a
protected network that it would otherwise have no accessto. We will demondirate thisinability to
communicate using traditiond methodsincluding ping or telnet. The firewall that protects that
secure network will execute ether the C or Java version of our proxy application, and the client and
protected server will get the C or Javaversion of our client or server applications. The specific tests
are outlined below. In each configuration, we will test a Tunndl request based upon eech of the
vaid combinations of Tunne attributes. Thisincludesbut isnot limitedtof gdn and por t, IP

address and port, and specific service requests.

24

2002/03 Aerospace Computer Science Clinic

44.1. SingleHost C

Thistest will ensure basic functiondity of the C profile. Asatrivid casg, it haslittle red

relevance, but provides abass for further testing.

4.4.2. SingleHost Java

Thistest serves the same purpose as the equivdent C test.

4.4.3. Client C, Sarver Java

This test ensures that a C client can interact with aJava server. This case provesthat the
BEEP implementations are compatible but provides little red gain for the Tunnd profile sinceit’s not

actudly tunnding.

4.4.4. Client Java, Server C

This test serves asSmilar purpose asthe previous tes, only in reverse.

4.45. Client C,Proxy C, Server C

Thisisthefirg actud example of atunnding Stuation. Thistest ensures that the C verson of
the Tunnel software works properly. It will first show that a direct connection between the client
and sarver is not possible, and then show that a connection using an gpplication implementing the
Tunnd profilewill dlow such athing. Sincedl codeisin C usng the C libraries, thistest will only

prove functiondity of the C code.

25

2002/03 Aerospace Computer Science Clinic

4.4.6. Client Java, Proxy Java, Server Java

This test mirrors the previous test except that it applies to the Java versons instead of the C

versons.

4.4.7. Client C, Proxy Java, Server C

Thistest provesthat C dients and servers can communicate usng a Java Proxy. Once we
have shown the sngle hop communication to work, thiswill only be an exercise in interoperability

teding.

4.4.8. Client Java, Proxy C, Server Java

Thistest mirrors the previous test except with a Java client and server using a C proxy for

tunnding. Again, the main purpose is to show interoperaility.

4.4.9. Client C,Proxy 1C, Proxy 2C, Server C

Once we have shown some basic interoperability, and single hop proxy hopping, the next
task isto show that multiple hop proxy hopping works. In this case, we will have two proxies, each
representing anetwork firewal. The client and server in thistest will not have the ahility to reach
past their own firewdl on the required port. But then when they use the Tunnd profile, the dient is

passed all the way through to the server.

4.4.10. Client C, Proxy 1 C, Proxy 2C, Server C

Thistest mirrors the previous test only using Javainstead of C. Thereisno need to prove

language interoperability here since previous tests have aready established this.

26

2002/03 Aerospace Computer Science Clinic

APPENDIX A: REFERENCES

Dierks T, Allen C. RFC 2246: “The TLS Protocol Version 1.0".
http:/AMww.ietf.org/rfc/rfc2246.txt number=2246. January 1999.

Feingein B, Matthews G, White J. " The Intruson Detection Exchange Protocol (IDXP)”.
http:/Aww.ietf .org/internet- drafts/draft-ietf-idwg-beep-idxp-07.txt. October 22, 2002.

Information Sciences Indtitute — University of Southern Cdifornia. RFC 793: “Transmisson Control
Protocol”. http://www.ietf.org/rfc/rfc0793.txt?number=793. September 1981.

IP Security Protocol (ipsec) Charter. http:/iwww.ietf.org/html.charters/ipsec-charter.ntml. October
1, 2002.

MeyersJ. RFC 2222: “Simple Authentication and Security Layer (SASL)”. October 1997.

New D. “The TUNNEL Profile’. http:/Amww.ietf.org/internet- drafts/draft-ietf-idwg- beep- tunne-
05.txt. December 5, 2002.

Pennington, Havoc. GTK+/Gnome Application Development. Riders, Indianapolis 1999.

Rescorla, Eric. SSL and TLS: Designing and Building Secure Sysems. Addison Wedey.

Rose, Marshdl T. BEEP: The Ddfinitive Guide. O’ Reilly 2002.

Rose, Marshdl T. RFC 3081: “Mapping the BEEP Core onto TCP".
http://ww.ietf.org/rfc/rfc3081.txt?number=3081. March 2001.

Rose, Marshdl T. RFC 3082: “The Blocks Extensible Exchange Protocol Core”.
http:/Amww.ietf .org/rfc/rfc3080.txt number=3080. March 2001

Secure Shell IETF Charter. http://Aww.ietf.org/html.charters/secsh charter.html. October 28,

2002.

27

2002/03 Aerospace Computer Science Clinic

Wright, Peter. GTK+/GNOME Programming. Wrox, Birmingham 2000.

28

2002/03 Aerospace Computer Science Clinic

APPENDIX B: SCHEDULE
Table 1: First Semester Schedule
September | October | November December

ID | Task Name o/1 | 9/8 |o/199/22)9/2910/6L0/11L0/2010/2111/3L 1710 11 L 112412111 2181 2/142/2
1 [Site Visit To Aerospace 1 100%
2 | Prepare Development Machine =l 100%
3 | Group Presentation 1 100%
4 | Proposal 100%
5 | Draft Proposal Due | 10/
6 | Proposal Due 10/11
7 | Evaluate Tunnel Draft H 100%
8 | Fall Break B 100%
9 | Choose BEEP Implementation

=
o

Single Host BEEP Communication

=
[N

Peer-to-peer BEEP Communication

[y
N

One-Hop BEEP Communication

=
w

Thanksgiving Break

[N
N

Midyear Report
Draft Midyear
Midyear Report
Winter Break

=
(&}

[y
[«2)

[N
~

10/18
.ilmO%

_llOO%

I 70%

= 100%
. 100%
u 12/
12/12
—

Firgt semester, we stayed fairly close to schedule, with some dight variationsto the original.

Although the C version has passed our initid tests, One-Hop BEEP Communications are not quite

finished yet since the Java verson of the Tunnd profile has not been tested.

29

2002/03 Aerospace Computer Science Clinic

Table 2: Second Semester Schedule

| January | February | March | | May
ID |Task Name 1212{1/5 1712017191726 2/2] 2/9]2/162/23 3/2] 3/9 |3/16|3/2d3/3d 4/6 l4/134/204/27 5/4|5/11/5/1
17 | Winter Break 0%
18 | Presentation B 24
19 | Spring Break = 0%
20 | Multiple Hop Tunneling _{5"/;'
21 | Firewall Proy Hanlding
22 | Code Freeze
23 | Final Report and CD 0%
24 | Draft Presentation
25 | Draft Final Report and CD
26 | Final Report and CD 5/12

Preliminary work has dready begun on second semester tasks. Multiple Hop Proxy works

to some degreein C. We think that Firewall Proxy Handling will betrivid after the norma proxy

hopping works. Most of our scheduled time will be devoted to regular testing.

2002/03 Aerospace Computer Science Clinic

APPENDIX C: CAPABILITIES

Dependencies

Implementation of Tunnel as a BEEP profile depends upon aworking verson of BEEP.
Some versions exist, but are till works in progress and cannot be guaranteed to function properly.
Wewill gart with the most trusted one available in both Javaand C and go from there. If BEEP
cannot operate in the way that it should, this may become a problem, but we hope that only the

obscure functiondity will have problems, if any.

Hardware

We currently have a single consumer grade persona computer running Redhat 7.3, which
has served as our firgt hogt for testing BEEP profiles. It has an Intel Pentium 4 processor and
256MB of RAM, which should be enough for the rdaively lightweight opensource software we
anticipate running. If thisis not powerful enough to run the Tunnd Protocol as we writeit, we
cannot expect any adoption. Additionally, we have a second persona computer smilar to thefirg,
running Redhat 8 with two network interface cards alowing for firewall teting. For more

complicated network topologies, we may need gtill more hardware, which we are currently trying to
acquire.
Software

We plan to use Javaand C to implement the BEEP Profiles for Tunnd. The two languages
are needed to fulfill not only the desires of Aerospace, but aso the requirements for acceptance as

an Internet Standard. We plan to use a free web-server daemon (Apache) for communicating our

31

2002/03 Aerospace Computer Science Clinic

work to othersviathe Internet. Additiondly, we have avariety of Microsoft operating system

licenses available to us, which may become useful for cross-platform compatibility testing.

Team Member Profiles

Nick Hertl (Project Manager)

Nick isasenior Computer Science mgjor at Harvey Mudd College. He hasworked in
System Adminigration for three years, mostly for the HMC Computer Science Department. He
spent the past two summers working at Microsoft, the most recent of which involved some high-
level network programming. His main experience with low level network protocols comes from a
Computer Networks class taken in the Spring of 2002 with Professor Mike Erlinger. He skison

both snow and water in hisrare freetime.

Will Berrid

Will is senior Computer Science mgjor a Harvey Mudd College. He has taken coursesin
Operating Systems and Computer Networks. He has worked with BEEP before in developing an
IDXP profile for PermaBEEP and client and server applications to transmit IDMEF messages
between an andyzer and aviewer. He currently competes for the Claremont Collegesin Cross
Country and Track.

Richard Fujiama

Richard is a senior Computer Science mgjor at Harvey Mudd College. He has severd
years of experience as a Windows and Unix system administrator as well as experience gained from

research with Mike Erlinger on the IDXP protocol. He is comfortable with network programming

32

2002/03 Aerospace Computer Science Clinic

inthe C and Javalanguages. Hisinterestsinclude operating systems, martid arts, and

entrepreneurship.

Chip Bradford

Chip isasenior Computer Science mgor a Harvey Mudd College. He has extensive
experience programming C/C++, especidly in low-levd environments such as Operaing Sysems
and the network stack. His summer was spent setting up a framework for automated testing of a
piece of billing software developed by LPASystems for Xerox. He is currently tutoring the

Networks class at Harvey Mudd. His other interests include computer games and parties.

2002/03 Aerospace Computer Science Clinic

APPENDIX D: TUNNEL.H

#i fndef __RR_TUNNEL_H _

#define _ RR TUNNEL_H

typedef struct _RRTunnel RRTunnel;
typedef struct _RRTunnel Cl ass RRTunnel Cl ass;

#define RR_TUNNEL_URI "http://xm .resource. org/ beep/ profil es/ TUNNEL"
#i nclude <librr/rr-channel.h>
G_BEG N_DECLS

#define RR_TYPE_TUNNEL (rr_tunnel _get _type ())

#defi ne RR_TUNNEL(obj) (G_TYPE_CHECK_ | NSTANCE_CAST((obj), RR_TYPE_TUNNEL,
RRTunnel))

#defi ne RR_TUNNEL_CLASS(kl ass) (G_TYPE_CHECK CLASS CAST ((kl ass),
RR_TYPE_TUNNEL, RRTunnel Cl ass))

#define RR_ IS _TUNNEL(obj) (G_TYPE_CHECK | NSTANCE_TYPE((obj),
RR_TYPE_TUNNEL))

#define RR_I'S_TUNNEL_CLASS(kl ass) (G_TYPE_CHECK CLASS TYPE ((kl ass),
RR_TYPE_TUNNEL))

#defi ne RR_TUNNEL_GET_CLASS(obj) (G_TYPE_I NSTANCE _GET_CLASS ((obj),
RR_TYPE_TUNNEL, RRTunnel Cl ass))

struct _RRTunnel {
RRChannel parent _object;

CGError *response_error;

}s

struct _RRTunnel Cl ass {
RRChannel Cl ass parent _cl ass;

b

GType rr_tunnel _get _type (void);

gbool ean rr_tunnel _start (RRConnection *connection, CGError **error,
gchar* payl oad) ;

G_END_DECLS

#endif /* __RR TUNNEL H__ */

2002/03 Aerospace Computer Science Clinic

APPENDIX E: TUNNEL.C

#i ncl ude <libxm /xm menory. h>
#i ncl ude <libxm /parser. h>
#include <librr/rr.h>

#i ncl ude "tunnel . h"

#i ncl ude <stdio. h>
#i ncl ude <string. h>

static GObjectClass *parent_class = NULL

static gbool ean frame_avail abl e (RRChannel *channel, RRFrane *frane,
GError **error);
static gboolean client_init (RRChannel *channel, GError **error);

static gbool ean repl yOK(RRConnection * conn, RRChannel* channel
GError** error);

static void sendError(gint code, gchar* text, RRChannel* channel
CError** error);

static RRConnection *
i nit_connection (const gchar *hostnane, gint port);

static gchar ok _nsg[] = RR_BEEP_M ME_HEADER "<ok />\r\n";

static gbool ean
xm Val i dTunnel Node (xm NodePtr node, GError **error)
{

int numAttrs;

xm AttrPtr cur;

/* Make sure we can parse fromthe node */
if (!node)
return FALSE;

/* Make sure its a tunnel node */
if (xm Strcnp (node->nanme, "tunnel") != 0)
return FALSE;

/* Count the nunmber of attributes in this node */
numAttrs = O;
cur = node->properties;
while (cur) {
++nUmAt trs;
cur = cur->next;

}

/*
* Return TRUE for valid attribute conbos

35

2002/03 Aerospace Computer Science Clinic

* According to the tunnel draft, the only all owable conbos are:
* fgdn + port;

* fgdn + srv;

* i p4 + port;

* profile, but only on the innernost el enent;

* endpoint, but only on the innernost el enent; or,

*

no attributes, but only on the innernost el enent.

if (((numAttrs == 2)
&& ((xm HasProp (node, "fqgdn")
&& (xm HasProp (node, "port")
|| xm HasProp (node, "srv")))
|| (xm HasProp (node, "ip4")
&& xm HasProp (node, "port"))))
|| ((numAttrs == 1) && ! node->children
&& ((xm HasProp (node, "profile")
|| xm HasProp (node, "endpoint"))))
|| ((numAttrs == 0) && !node->children))
return TRUE;

/* No other set of attributes should be allowed */
return FALSE;

}

/* function intentionally left blank... it doesn't do anything for now...
*/

static void

rr_tunnel _init (GObject *object)

{

}

/* sets up function pointers for tunnel "objects" */
static void
rr_tunnel _class_init (GObjectC ass *kl ass)

{
RRChannel Cl ass *channel _cl ass = (RRChannel Cl ass *) Kkl ass;
channel _cl ass->frane_avail able = frame_avail abl e;
channel _class->client_init = client_init;
parent _class = g_type_cl ass_peek_parent (klass);

}

/* returns the glib type of the RRTunnel object */

Glype

rr_tunnel _get_type (void)

{

static Glype rr_type = O;

if ('rr_type) {
static Glypelnfo type_info = {
si zeof (RRTunnel Cl ass),
NULL,
NULL,

2002/03 Aerospace Computer Science Clinic

(GClasslnitFunc) rr_tunnel _class_init,
NULL,
NULL,
si zeof (RRTunnel),
16,
(A nstancelnitFunc) rr_tunnel _init
rr_type = g_type_register_static (RR_TYPE_CHANNEL,
"RRTunnel ",
& ype_info, 0);

rr_channel _set _uri (rr_type, RR_TUNNEL_URI);
}

return rr_type

}

/* Al'lows proxy to connect inconm ng and outgoi ng sockets */

static gbool ean
pass_t hrough (G CChannel *source, G OCondition condition, gpointer data)
{

G OChannel *dest = (d OChannel *)dat a;

const gsize BUF_SIZE = 1024,

gchar buffer[BUF_SI ZE] ;

gsi ze read, witten;

do {
g_i o_channel _read_chars(source, buffer, BUF_SIZE, &read, NULL);
g_i o_channel _write_chars(dest, buffer, read, witten, NULL);
}
/* Continue reading while the buffer is full and all the bytes
* are successfully copied. If an error occurs, just exit quietly
* since tunnel _close should be called by the glib event |oop. */
while (read >= BUF_SIZE && read == written);

}

/* Termi nates second socket when the first one in a proxy connection dies
*/

static gbool ean
tunnel _cl ose (G OChannel *source, G OCondition condition, gpointer data)

{
G OChannel *dest = (d OChannel *)dat a;

g_i o_channel _unref(source);
g_i o_channel _unref (dest);

}

/* Automatically gets called when a new frame cones in */

static gbool ean
frame_avai |l abl e (RRChannel *channel, RRFranme *frame, GError **error)

{
RRTunnel *tunnel = RR_TUNNEL (channel);

37

2002/03 Aerospace Computer Science Clinic

RRMessage *nsg;

RRConnecti on *conn = channel - >connecti on
RRConnecti on *out _goi ng;

G OChannel *in, *out;

gchar *body;

gi nt 32 size

xm DocPtr doc;

xm NodePtr cur;

g_return_val _if _fail (RR_IS _TUNNEL (channel), FALSE)

/* Remove M ME headers */
body = rr_franme_m me_get _body (frane);
size = rr_frame_mi ne_get _body_size (frane);
/* Parse xm in the frame */
if (!'(doc = xnm ParseMenory (body, size))) {
sendError (500, "Ml fornmed XM.", channel, error);
goto error;

}

/* Get the document root object */
if (!'(cur = xnm DocCet Root El enent (doc))) {
sendError (500, "Ml forned XM.: No root elenent", channel, error);
goto error;

}

if (frame->type == RR_FRAME_TYPE_MSQ {
/* Make sure this is a tunnel message */
if (!xm ValidTunnel Node (cur, error)) {
sendError (501, "Syntax error in paranmeters"
channel, error);
goto error;

}

/* Check for enmpty tunnel element */
if ('cur->children && !cur->properties) {
i f(!replyOK(conn, channel, error))
goto error;
}
/* I f a non-enpty tunnel element */
el se {
xm Char* next _host;
xm Char* port;
xm NodePtr* child;
xm Char* next _nsg;
i f(xm HasProp(cur, "ip4")){ /* ip4 + port */
next _host = xm Get Prop(cur, "ip4");
port = xm GetProp(cur, "port");
child = cur->xm Chil drenNode;
next _msg = xml NodelLi st Get String(doc, child, 1);

2002/03 Aerospace Computer Science Clinic

else if (xm HasProp(cur, "fqdn") && xm HasProp(cur

"port")) { /* fqgdn + port */

error);

<ok/ >",

}

/*

next host = xm Get Prop(cur, "fqdn");
port = xm GetProp(cur, "port");
next _nmsg = xml NodelLi st Get String(doc, child, 1);

}

el se {
sendError (504, "Paraneter not inplenmented’, channel
goto error;

}

out _going = init_connection(next_host, atoi(port));

if(!rr_tunnel _start(out_going, &error, next_nsg)){
sendError (450, "Failed to connect to next hop"
channel, error);
goto error;

}

i f(!replyOK(conn, channel, error))
goto error;

in = RR_TCP_CONNECTI ON(conn) - >i ochannel
out = RR_TCP_CONNECTI ON(out _goi ng) - >i ochannel

g_i o_channel _ref(in);
g_i o_channel _ref(out);

g_io_add _watch(in, GIOIN| G.IOPRI, pass_through

g_io_add_watch(out, GIOIN| G.IOPRI, pass_through

g_io_add_watch(in, GIOHUP | GIOERR | GO NVAL,
tunnel _cl ose, out);

g_io_add_watch(out, GIOHUP | GIOERR | GO NVAL,
tunnel _cl ose, in);

xm Free(next _nsg);

xm Free(next _host);

xm Free(port);

FI XME: proxies should handl e other tunnel elenments */

else if (franme->type == RR_FRAME_TYPE_RPY) {
/*

Make sure its an ok node */

if (xm Strcnp (cur->nanme, "ok") !'= 0) {

sendError (500, "Wong content for reply, expected

channel, error);
goto error;

39

2002/03 Aerospace Computer Science Clinic

}

rr_connection_conpl ete_tuning reset (conn, channel);

}

else if (franme->type == RR_FRAME_TYPE_ERR) {
xm Char* code = xml Get Prop(cur, "code");
xm Char* errtext =
xm NodelLi st Get String(doc, cur->xm ChildrenNode, 1);

/1 Make sure errtext does not contain % signs.
g_set _error(error, RR ERROR, atoi(code), errtext);

xm Free(errtext);
xm Free(code);

rr_connection_di sconnect (conn, error);
goto error;

el se /* Sonething else? */ {
sendError (500, "Wong nessage type", channel, error);
goto error;

}

xm FreeDoc (doc);
return TRUE;

error:
xm FreeDoc (doc);
return FALSE;

}

/* sends a packaged ok nessage. saves fromrepeating this many tinmes */

static gbool ean repl yOK(RRConnection * conn, RRChannel* channel
GError** error) {
RRMessage * nsg;
nsg = rr_nessage_static_new (RR_FRAME_TYPE_RPY,
ok _nsgqg,
si zeof (ok_mnsg),
FALSE) ;

/* Send the nmessage and performa tuning reset */

if (!'rr_connection_begin_tuning_reset (conn, error))
return FALSE

if (!rr_channel _send_nessage (channel, nsg, error))
return FALSE

rr_connection_conplete_tuning_reset (conn, channel);

return TRUE

2002/03 Aerospace Computer Science Clinic

/* sends an error nmessage. It takes the error code, error text, and then
* the channel and error pointers so you know whi ch channel to send it on
*/

static void sendError(gint code, gchar* text, RRChannel* channel
CError** error) {
RRMessage* nsg = (RRMessage*)rr_nessage_error_new code,
NULL,
text);
rr_channel _send_nessage (channel, nsg, error);

}

/* initializes client for tunnelling */

static gbool ean
client_init (RRChannel *channel, GError **error)

{

rr_connection_begi n_tuning_reset (channel->connection, NULL);
return TRUE;

}

/* initializes connection */

stati c RRConnection *
i nit_connection (const gchar *hostnane, gint port)

{
RRProf i | eRegi stry *profreg;
RRConnecti on *conn
GError *error = NULL,
gi nt use_tunnel = TRUE
[* Tell roadrunner which profiles we want to support */
profreg = rr_profile_registry_new ();
rr_profile_registry _add profile (profreg, RR _TYPE_TUNNEL, NULL);
/* Create a connection object */
if ((conn = rr_tcp_connection_new (profreg, hostnanme, port,
&error)) == NULL)
g_error ("connection failed: %s\n", error->nessage);
return conn;
}
/* starts the tunnel. This function gets called by the user application
*/
gbool ean

rr_tunnel _start (RRConnection *connection, CGError **error, gchar* payl oad)
{

RRMessage *nsg;

RRManager *nmanager;

RRTunnel *tunnel

gchar* str;

gsize str_len;

41

2002/03 Aerospace Computer Science Clinic

*/

error:

i f(!payl oad)
payl oad = "<tunnel /> \r\n";

/* Add the M ME header to the nessage. */

str_len = RR_BEEP_M ME_HEADER LEN + strl en(payl oad);
str = g_malloc(str_len);

g_stpcpy(str, RR_BEEP_M ME_HEADER)
g_stpcpy(str+RR_BEEP_M ME_HEADER LEN, payl oad);
printf("%:%\n", str_len, str);

g_return_val _if _fail (RR_I S _CONNECTION (connection), FALSE)
manager = rr_connection_get _nmanager (connection);
g_return_val _if _fail (RR_IS _MANAGER (manager), FALSE)

if ((tunnel = (RRTunnel *)rr_connection_start (connection, NULL,
RR_TYPE_TUNNEL,
NULL, error)) == NULL)

goto error;

nmsg = rr_nessage_static_new (RR_FRAME TYPE MSG, str, str_len
FALSE) ;
/* Don't free str yet... its used by reference in the nsg object!

if (!'rr_channel _send_nessage (RR_CHANNEL (tunnel), nsg, error))
goto error;

if ('rr_manager_wait_for_greeting (manager, error))
goto error;

/* FIXME: Are we sure we don't need this? */

/*

if ('rr_manager_wait_for_greeting _sent (nanager, error))
goto error;

*/

if (tunnel->response_error) {

g_propagate_error (error, tunnel->response_error);
tunnel - >response_error = NULL;
goto error;

}

g_object _unref (G OBJECT (tunnel));
g_free(str);
return TRUE;

g_obj ect _unref (G OBJECT(tunnel));

g_free(str);
return FALSE;

42

